feat:【AI 大模型】依赖 spring ai 升级到 1.0.0

pull/198/head
YunaiV 2025-07-14 23:35:56 +08:00
parent 7a8e089a42
commit ef874191a6
30 changed files with 387 additions and 415 deletions

View File

@ -14,11 +14,12 @@
<description>
ai 模块下,接入 LLM 大模型,支持聊天、绘图、音乐、写作、思维导图等功能。
目前已接入各种模型,不限于:
国内:通义千问、文心一言、讯飞星火、智谱 GLM、DeepSeek
国外OpenAI、Ollama、Midjourney、StableDiffusion、Suno
国内:通义千问、文心一言、讯飞星火、智谱 GLM、DeepSeek
国外OpenAI、Ollama、Midjourney、StableDiffusion、Suno
</description>
<properties>
<spring-ai.version>1.0.0-M6</spring-ai.version>
<spring-ai.version>1.0.0</spring-ai.version>
<alibaba-ai.version>1.0.0.2</alibaba-ai.version>
<tinyflow.version>1.0.2</tinyflow.version>
</properties>
@ -110,65 +111,73 @@
<!-- Spring AI Model 模型接入 -->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-openai-spring-boot-starter</artifactId>
<artifactId>spring-ai-starter-model-openai</artifactId>
<version>${spring-ai.version}</version>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-azure-openai-spring-boot-starter</artifactId>
<artifactId>spring-ai-starter-model-azure-openai</artifactId>
<version>${spring-ai.version}</version>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
<artifactId>spring-ai-starter-model-deepseek</artifactId>
<version>${spring-ai.version}</version>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-stability-ai-spring-boot-starter</artifactId>
<artifactId>spring-ai-starter-model-ollama</artifactId>
<version>${spring-ai.version}</version>
</dependency>
<dependency>
<!-- 通义千问 -->
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter</artifactId>
<version>${spring-ai.version}.1</version>
</dependency>
<dependency>
<!-- 文心一言 -->
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-qianfan-spring-boot-starter</artifactId>
<artifactId>spring-ai-starter-model-stability-ai</artifactId>
<version>${spring-ai.version}</version>
</dependency>
<dependency>
<!-- 智谱 GLM -->
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-zhipuai-spring-boot-starter</artifactId>
<artifactId>spring-ai-starter-model-zhipuai</artifactId>
<version>${spring-ai.version}</version>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-minimax-spring-boot-starter</artifactId>
<artifactId>spring-ai-starter-model-minimax</artifactId>
<version>${spring-ai.version}</version>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-moonshot-spring-boot-starter</artifactId>
<version>${spring-ai.version}</version>
<!-- 通义千问 -->
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-starter-dashscope</artifactId>
<version>${alibaba-ai.version}</version>
</dependency>
<dependency>
<!-- 文心一言 -->
<groupId>org.springaicommunity</groupId>
<artifactId>qianfan-spring-boot-starter</artifactId>
<version>1.0.0</version>
</dependency>
<dependency>
<!-- 月之暗灭 -->
<groupId>org.springaicommunity</groupId>
<artifactId>moonshot-spring-boot-starter</artifactId>
<version>1.0.0</version>
</dependency>
<!-- 向量存储https://db-engines.com/en/ranking/vector+dbms -->
<dependency>
<!-- Qdranthttps://qdrant.tech/ -->
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-qdrant-store</artifactId>
<artifactId>spring-ai-starter-vector-store-qdrant</artifactId>
<version>${spring-ai.version}</version>
</dependency>
<dependency>
<!-- Redishttps://redis.io/docs/latest/develop/get-started/vector-database/ -->
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-redis-store</artifactId>
<artifactId>spring-ai-starter-vector-store-redis</artifactId>
<version>${spring-ai.version}</version>
</dependency>
<dependency>
@ -179,7 +188,7 @@
<dependency>
<!-- Milvushttps://milvus.io/ -->
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-milvus-store</artifactId>
<artifactId>spring-ai-starter-vector-store-milvus</artifactId>
<version>${spring-ai.version}</version>
<exclusions>
<!-- 解决和 logback 的日志冲突 -->

View File

@ -13,8 +13,8 @@ import org.springframework.boot.autoconfigure.SpringBootApplication;
* @author
*/
@SpringBootApplication(exclude = {
org.springframework.ai.autoconfigure.vectorstore.qdrant.QdrantVectorStoreAutoConfiguration.class,
org.springframework.ai.autoconfigure.vectorstore.milvus.MilvusVectorStoreAutoConfiguration.class,
org.springframework.ai.vectorstore.qdrant.autoconfigure.QdrantVectorStoreAutoConfiguration.class,
org.springframework.ai.vectorstore.milvus.autoconfigure.MilvusVectorStoreAutoConfiguration.class,
}) // 解决 application-${profile}.yaml 配置文件下,通过 spring.autoconfigure.exclude 无法排除的问题
public class AiServerApplication {

View File

@ -5,7 +5,6 @@ import cn.hutool.extra.spring.SpringUtil;
import cn.iocoder.yudao.module.ai.framework.ai.core.AiModelFactory;
import cn.iocoder.yudao.module.ai.framework.ai.core.AiModelFactoryImpl;
import cn.iocoder.yudao.module.ai.framework.ai.core.model.baichuan.BaiChuanChatModel;
import cn.iocoder.yudao.module.ai.framework.ai.core.model.deepseek.DeepSeekChatModel;
import cn.iocoder.yudao.module.ai.framework.ai.core.model.doubao.DouBaoChatModel;
import cn.iocoder.yudao.module.ai.framework.ai.core.model.hunyuan.HunYuanChatModel;
import cn.iocoder.yudao.module.ai.framework.ai.core.model.midjourney.api.MidjourneyApi;
@ -14,10 +13,6 @@ import cn.iocoder.yudao.module.ai.framework.ai.core.model.siliconflow.SiliconFlo
import cn.iocoder.yudao.module.ai.framework.ai.core.model.suno.api.SunoApi;
import cn.iocoder.yudao.module.ai.framework.ai.core.model.xinghuo.XingHuoChatModel;
import lombok.extern.slf4j.Slf4j;
import org.springframework.ai.autoconfigure.vectorstore.milvus.MilvusServiceClientProperties;
import org.springframework.ai.autoconfigure.vectorstore.milvus.MilvusVectorStoreProperties;
import org.springframework.ai.autoconfigure.vectorstore.qdrant.QdrantVectorStoreProperties;
import org.springframework.ai.autoconfigure.vectorstore.redis.RedisVectorStoreProperties;
import org.springframework.ai.embedding.BatchingStrategy;
import org.springframework.ai.embedding.TokenCountBatchingStrategy;
import org.springframework.ai.model.tool.ToolCallingManager;
@ -26,6 +21,10 @@ import org.springframework.ai.openai.OpenAiChatOptions;
import org.springframework.ai.openai.api.OpenAiApi;
import org.springframework.ai.tokenizer.JTokkitTokenCountEstimator;
import org.springframework.ai.tokenizer.TokenCountEstimator;
import org.springframework.ai.vectorstore.milvus.autoconfigure.MilvusServiceClientProperties;
import org.springframework.ai.vectorstore.milvus.autoconfigure.MilvusVectorStoreProperties;
import org.springframework.ai.vectorstore.qdrant.autoconfigure.QdrantVectorStoreProperties;
import org.springframework.ai.vectorstore.redis.autoconfigure.RedisVectorStoreProperties;
import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty;
import org.springframework.boot.context.properties.EnableConfigurationProperties;
import org.springframework.context.annotation.Bean;
@ -52,33 +51,6 @@ public class AiAutoConfiguration {
// ========== 各种 AI Client 创建 ==========
@Bean
@ConditionalOnProperty(value = "yudao.ai.deepseek.enable", havingValue = "true")
public DeepSeekChatModel deepSeekChatModel(YudaoAiProperties yudaoAiProperties) {
YudaoAiProperties.DeepSeekProperties properties = yudaoAiProperties.getDeepseek();
return buildDeepSeekChatModel(properties);
}
public DeepSeekChatModel buildDeepSeekChatModel(YudaoAiProperties.DeepSeekProperties properties) {
if (StrUtil.isEmpty(properties.getModel())) {
properties.setModel(DeepSeekChatModel.MODEL_DEFAULT);
}
OpenAiChatModel openAiChatModel = OpenAiChatModel.builder()
.openAiApi(OpenAiApi.builder()
.baseUrl(DeepSeekChatModel.BASE_URL)
.apiKey(properties.getApiKey())
.build())
.defaultOptions(OpenAiChatOptions.builder()
.model(properties.getModel())
.temperature(properties.getTemperature())
.maxTokens(properties.getMaxTokens())
.topP(properties.getTopP())
.build())
.toolCallingManager(getToolCallingManager())
.build();
return new DeepSeekChatModel(openAiChatModel);
}
@Bean
@ConditionalOnProperty(value = "yudao.ai.doubao.enable", havingValue = "true")
public DouBaoChatModel douBaoChatClient(YudaoAiProperties yudaoAiProperties) {

View File

@ -13,12 +13,6 @@ import org.springframework.boot.context.properties.ConfigurationProperties;
@Data
public class YudaoAiProperties {
/**
* DeepSeek
*/
@SuppressWarnings("SpellCheckingInspection")
private DeepSeekProperties deepseek;
/**
*
*/
@ -60,19 +54,6 @@ public class YudaoAiProperties {
@SuppressWarnings("SpellCheckingInspection")
private SunoProperties suno;
@Data
public static class DeepSeekProperties {
private String enable;
private String apiKey;
private String model;
private Double temperature;
private Integer maxTokens;
private Double topP;
}
@Data
public static class DouBaoProperties {

View File

@ -8,11 +8,11 @@ import cn.hutool.core.util.ArrayUtil;
import cn.hutool.core.util.RuntimeUtil;
import cn.hutool.core.util.StrUtil;
import cn.hutool.extra.spring.SpringUtil;
import cn.iocoder.yudao.framework.common.util.spring.SpringUtils;
import cn.iocoder.yudao.module.ai.enums.model.AiPlatformEnum;
import cn.iocoder.yudao.module.ai.framework.ai.config.AiAutoConfiguration;
import cn.iocoder.yudao.module.ai.framework.ai.config.YudaoAiProperties;
import cn.iocoder.yudao.module.ai.enums.model.AiPlatformEnum;
import cn.iocoder.yudao.module.ai.framework.ai.core.model.baichuan.BaiChuanChatModel;
import cn.iocoder.yudao.module.ai.framework.ai.core.model.deepseek.DeepSeekChatModel;
import cn.iocoder.yudao.module.ai.framework.ai.core.model.doubao.DouBaoChatModel;
import cn.iocoder.yudao.module.ai.framework.ai.core.model.hunyuan.HunYuanChatModel;
import cn.iocoder.yudao.module.ai.framework.ai.core.model.midjourney.api.MidjourneyApi;
@ -22,8 +22,9 @@ import cn.iocoder.yudao.module.ai.framework.ai.core.model.siliconflow.SiliconFlo
import cn.iocoder.yudao.module.ai.framework.ai.core.model.siliconflow.SiliconFlowImageModel;
import cn.iocoder.yudao.module.ai.framework.ai.core.model.suno.api.SunoApi;
import cn.iocoder.yudao.module.ai.framework.ai.core.model.xinghuo.XingHuoChatModel;
import cn.iocoder.yudao.framework.common.util.spring.SpringUtils;
import com.alibaba.cloud.ai.autoconfigure.dashscope.DashScopeAutoConfiguration;
import com.alibaba.cloud.ai.autoconfigure.dashscope.DashScopeChatAutoConfiguration;
import com.alibaba.cloud.ai.autoconfigure.dashscope.DashScopeEmbeddingAutoConfiguration;
import com.alibaba.cloud.ai.autoconfigure.dashscope.DashScopeImageAutoConfiguration;
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
import com.alibaba.cloud.ai.dashscope.api.DashScopeImageApi;
import com.alibaba.cloud.ai.dashscope.chat.DashScopeChatModel;
@ -32,47 +33,55 @@ import com.alibaba.cloud.ai.dashscope.embedding.DashScopeEmbeddingModel;
import com.alibaba.cloud.ai.dashscope.embedding.DashScopeEmbeddingOptions;
import com.alibaba.cloud.ai.dashscope.image.DashScopeImageModel;
import com.azure.ai.openai.OpenAIClientBuilder;
import com.azure.core.credential.KeyCredential;
import io.micrometer.observation.ObservationRegistry;
import io.milvus.client.MilvusServiceClient;
import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import lombok.SneakyThrows;
import org.springframework.ai.autoconfigure.azure.openai.AzureOpenAiAutoConfiguration;
import org.springframework.ai.autoconfigure.azure.openai.AzureOpenAiChatProperties;
import org.springframework.ai.autoconfigure.azure.openai.AzureOpenAiConnectionProperties;
import org.springframework.ai.autoconfigure.azure.openai.AzureOpenAiEmbeddingProperties;
import org.springframework.ai.autoconfigure.minimax.MiniMaxAutoConfiguration;
import org.springframework.ai.autoconfigure.moonshot.MoonshotAutoConfiguration;
import org.springframework.ai.autoconfigure.ollama.OllamaAutoConfiguration;
import org.springframework.ai.autoconfigure.openai.OpenAiAutoConfiguration;
import org.springframework.ai.autoconfigure.qianfan.QianFanAutoConfiguration;
import org.springframework.ai.autoconfigure.stabilityai.StabilityAiImageAutoConfiguration;
import org.springframework.ai.autoconfigure.vectorstore.milvus.MilvusServiceClientConnectionDetails;
import org.springframework.ai.autoconfigure.vectorstore.milvus.MilvusServiceClientProperties;
import org.springframework.ai.autoconfigure.vectorstore.milvus.MilvusVectorStoreAutoConfiguration;
import org.springframework.ai.autoconfigure.vectorstore.milvus.MilvusVectorStoreProperties;
import org.springframework.ai.autoconfigure.vectorstore.qdrant.QdrantVectorStoreAutoConfiguration;
import org.springframework.ai.autoconfigure.vectorstore.qdrant.QdrantVectorStoreProperties;
import org.springframework.ai.autoconfigure.vectorstore.redis.RedisVectorStoreAutoConfiguration;
import org.springframework.ai.autoconfigure.vectorstore.redis.RedisVectorStoreProperties;
import org.springframework.ai.autoconfigure.zhipuai.ZhiPuAiAutoConfiguration;
import org.springaicommunity.moonshot.MoonshotChatModel;
import org.springaicommunity.moonshot.MoonshotChatOptions;
import org.springaicommunity.moonshot.api.MoonshotApi;
import org.springaicommunity.moonshot.autoconfigure.MoonshotChatAutoConfiguration;
import org.springaicommunity.qianfan.QianFanChatModel;
import org.springaicommunity.qianfan.QianFanEmbeddingModel;
import org.springaicommunity.qianfan.QianFanEmbeddingOptions;
import org.springaicommunity.qianfan.QianFanImageModel;
import org.springaicommunity.qianfan.api.QianFanApi;
import org.springaicommunity.qianfan.api.QianFanImageApi;
import org.springaicommunity.qianfan.autoconfigure.QianFanChatAutoConfiguration;
import org.springaicommunity.qianfan.autoconfigure.QianFanEmbeddingAutoConfiguration;
import org.springframework.ai.azure.openai.AzureOpenAiChatModel;
import org.springframework.ai.azure.openai.AzureOpenAiEmbeddingModel;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.deepseek.DeepSeekChatModel;
import org.springframework.ai.deepseek.DeepSeekChatOptions;
import org.springframework.ai.deepseek.api.DeepSeekApi;
import org.springframework.ai.document.MetadataMode;
import org.springframework.ai.embedding.BatchingStrategy;
import org.springframework.ai.embedding.EmbeddingModel;
import org.springframework.ai.embedding.observation.EmbeddingModelObservationConvention;
import org.springframework.ai.image.ImageModel;
import org.springframework.ai.minimax.MiniMaxChatModel;
import org.springframework.ai.minimax.MiniMaxChatOptions;
import org.springframework.ai.minimax.MiniMaxEmbeddingModel;
import org.springframework.ai.minimax.MiniMaxEmbeddingOptions;
import org.springframework.ai.minimax.api.MiniMaxApi;
import org.springframework.ai.model.function.FunctionCallbackResolver;
import org.springframework.ai.model.azure.openai.autoconfigure.AzureOpenAiChatAutoConfiguration;
import org.springframework.ai.model.azure.openai.autoconfigure.AzureOpenAiEmbeddingAutoConfiguration;
import org.springframework.ai.model.azure.openai.autoconfigure.AzureOpenAiEmbeddingProperties;
import org.springframework.ai.model.deepseek.autoconfigure.DeepSeekChatAutoConfiguration;
import org.springframework.ai.model.minimax.autoconfigure.MiniMaxChatAutoConfiguration;
import org.springframework.ai.model.minimax.autoconfigure.MiniMaxEmbeddingAutoConfiguration;
import org.springframework.ai.model.ollama.autoconfigure.OllamaChatAutoConfiguration;
import org.springframework.ai.model.openai.autoconfigure.OpenAiChatAutoConfiguration;
import org.springframework.ai.model.openai.autoconfigure.OpenAiEmbeddingAutoConfiguration;
import org.springframework.ai.model.openai.autoconfigure.OpenAiImageAutoConfiguration;
import org.springframework.ai.model.stabilityai.autoconfigure.StabilityAiImageAutoConfiguration;
import org.springframework.ai.model.tool.ToolCallingManager;
import org.springframework.ai.moonshot.MoonshotChatModel;
import org.springframework.ai.moonshot.MoonshotChatOptions;
import org.springframework.ai.moonshot.api.MoonshotApi;
import org.springframework.ai.model.zhipuai.autoconfigure.ZhiPuAiChatAutoConfiguration;
import org.springframework.ai.model.zhipuai.autoconfigure.ZhiPuAiEmbeddingAutoConfiguration;
import org.springframework.ai.model.zhipuai.autoconfigure.ZhiPuAiImageAutoConfiguration;
import org.springframework.ai.ollama.OllamaChatModel;
import org.springframework.ai.ollama.OllamaEmbeddingModel;
import org.springframework.ai.ollama.api.OllamaApi;
@ -84,21 +93,23 @@ import org.springframework.ai.openai.OpenAiImageModel;
import org.springframework.ai.openai.api.OpenAiApi;
import org.springframework.ai.openai.api.OpenAiImageApi;
import org.springframework.ai.openai.api.common.OpenAiApiConstants;
import org.springframework.ai.qianfan.QianFanChatModel;
import org.springframework.ai.qianfan.QianFanEmbeddingModel;
import org.springframework.ai.qianfan.QianFanEmbeddingOptions;
import org.springframework.ai.qianfan.QianFanImageModel;
import org.springframework.ai.qianfan.api.QianFanApi;
import org.springframework.ai.qianfan.api.QianFanImageApi;
import org.springframework.ai.stabilityai.StabilityAiImageModel;
import org.springframework.ai.stabilityai.api.StabilityAiApi;
import org.springframework.ai.vectorstore.SimpleVectorStore;
import org.springframework.ai.vectorstore.VectorStore;
import org.springframework.ai.vectorstore.milvus.MilvusVectorStore;
import org.springframework.ai.vectorstore.milvus.autoconfigure.MilvusServiceClientConnectionDetails;
import org.springframework.ai.vectorstore.milvus.autoconfigure.MilvusServiceClientProperties;
import org.springframework.ai.vectorstore.milvus.autoconfigure.MilvusVectorStoreAutoConfiguration;
import org.springframework.ai.vectorstore.milvus.autoconfigure.MilvusVectorStoreProperties;
import org.springframework.ai.vectorstore.observation.DefaultVectorStoreObservationConvention;
import org.springframework.ai.vectorstore.observation.VectorStoreObservationConvention;
import org.springframework.ai.vectorstore.qdrant.QdrantVectorStore;
import org.springframework.ai.vectorstore.qdrant.autoconfigure.QdrantVectorStoreAutoConfiguration;
import org.springframework.ai.vectorstore.qdrant.autoconfigure.QdrantVectorStoreProperties;
import org.springframework.ai.vectorstore.redis.RedisVectorStore;
import org.springframework.ai.vectorstore.redis.autoconfigure.RedisVectorStoreAutoConfiguration;
import org.springframework.ai.vectorstore.redis.autoconfigure.RedisVectorStoreProperties;
import org.springframework.ai.zhipuai.*;
import org.springframework.ai.zhipuai.api.ZhiPuAiApi;
import org.springframework.ai.zhipuai.api.ZhiPuAiImageApi;
@ -190,7 +201,7 @@ public class AiModelFactoryImpl implements AiModelFactory {
case XING_HUO:
return SpringUtil.getBean(XingHuoChatModel.class);
case BAI_CHUAN:
return SpringUtil.getBean(AzureOpenAiChatModel.class);
return SpringUtil.getBean(BaiChuanChatModel.class);
case OPENAI:
return SpringUtil.getBean(OpenAiChatModel.class);
case AZURE_OPENAI:
@ -319,27 +330,34 @@ public class AiModelFactoryImpl implements AiModelFactory {
// ========== 各种创建 spring-ai 客户端的方法 ==========
/**
* {@link DashScopeAutoConfiguration} dashscopeChatModel
* {@link DashScopeChatAutoConfiguration} dashscopeChatModel
*/
private static DashScopeChatModel buildTongYiChatModel(String key) {
DashScopeApi dashScopeApi = new DashScopeApi(key);
DashScopeApi dashScopeApi = DashScopeApi.builder().apiKey(key).build();
DashScopeChatOptions options = DashScopeChatOptions.builder().withModel(DashScopeApi.DEFAULT_CHAT_MODEL)
.withTemperature(0.7).build();
return new DashScopeChatModel(dashScopeApi, options, getFunctionCallbackResolver(), DEFAULT_RETRY_TEMPLATE);
return DashScopeChatModel.builder()
.dashScopeApi(dashScopeApi)
.defaultOptions(options)
.toolCallingManager(getToolCallingManager())
.build();
}
/**
* {@link DashScopeAutoConfiguration} dashScopeImageModel
* {@link DashScopeImageAutoConfiguration} dashScopeImageModel
*/
private static DashScopeImageModel buildTongYiImagesModel(String key) {
DashScopeImageApi dashScopeImageApi = new DashScopeImageApi(key);
return new DashScopeImageModel(dashScopeImageApi);
return DashScopeImageModel.builder()
.dashScopeApi(dashScopeImageApi)
.build();
}
/**
* {@link QianFanAutoConfiguration} qianFanChatModel
* {@link QianFanChatAutoConfiguration} qianFanChatModel
*/
private static QianFanChatModel buildYiYanChatModel(String key) {
// TODO spring ai qianfan 有 bug无法使用 https://github.com/spring-ai-community/qianfan/issues/6
List<String> keys = StrUtil.split(key, '|');
Assert.equals(keys.size(), 2, "YiYanChatClient 的密钥需要 (appKey|secretKey) 格式");
String appKey = keys.get(0);
@ -349,9 +367,10 @@ public class AiModelFactoryImpl implements AiModelFactory {
}
/**
* {@link QianFanAutoConfiguration} qianFanImageModel
* {@link QianFanEmbeddingAutoConfiguration} qianFanImageModel
*/
private QianFanImageModel buildQianFanImageModel(String key) {
// TODO spring ai qianfan 有 bug无法使用 https://github.com/spring-ai-community/qianfan/issues/6
List<String> keys = StrUtil.split(key, '|');
Assert.equals(keys.size(), 2, "YiYanChatClient 的密钥需要 (appKey|secretKey) 格式");
String appKey = keys.get(0);
@ -361,12 +380,17 @@ public class AiModelFactoryImpl implements AiModelFactory {
}
/**
* {@link AiAutoConfiguration#deepSeekChatModel(YudaoAiProperties)}
* {@link DeepSeekChatAutoConfiguration} deepSeekChatModel
*/
private static DeepSeekChatModel buildDeepSeekChatModel(String apiKey) {
YudaoAiProperties.DeepSeekProperties properties = new YudaoAiProperties.DeepSeekProperties()
.setApiKey(apiKey);
return new AiAutoConfiguration().buildDeepSeekChatModel(properties);
DeepSeekApi deepSeekApi = DeepSeekApi.builder().apiKey(apiKey).build();
DeepSeekChatOptions options = DeepSeekChatOptions.builder().model(DeepSeekApi.DEFAULT_CHAT_MODEL)
.temperature(0.7).build();
return DeepSeekChatModel.builder()
.deepSeekApi(deepSeekApi)
.defaultOptions(options)
.toolCallingManager(getToolCallingManager())
.build();
}
/**
@ -397,17 +421,18 @@ public class AiModelFactoryImpl implements AiModelFactory {
}
/**
* {@link ZhiPuAiAutoConfiguration} zhiPuAiChatModel
* {@link ZhiPuAiChatAutoConfiguration} zhiPuAiChatModel
*/
private ZhiPuAiChatModel buildZhiPuChatModel(String apiKey, String url) {
ZhiPuAiApi zhiPuAiApi = StrUtil.isEmpty(url) ? new ZhiPuAiApi(apiKey)
: new ZhiPuAiApi(url, apiKey);
ZhiPuAiChatOptions options = ZhiPuAiChatOptions.builder().model(ZhiPuAiApi.DEFAULT_CHAT_MODEL).temperature(0.7).build();
return new ZhiPuAiChatModel(zhiPuAiApi, options, getFunctionCallbackResolver(), DEFAULT_RETRY_TEMPLATE);
return new ZhiPuAiChatModel(zhiPuAiApi, options, getToolCallingManager(), DEFAULT_RETRY_TEMPLATE,
getObservationRegistry().getIfAvailable());
}
/**
* {@link ZhiPuAiAutoConfiguration} zhiPuAiImageModel
* {@link ZhiPuAiImageAutoConfiguration} zhiPuAiImageModel
*/
private ZhiPuAiImageModel buildZhiPuAiImageModel(String apiKey, String url) {
ZhiPuAiImageApi zhiPuAiApi = StrUtil.isEmpty(url) ? new ZhiPuAiImageApi(apiKey)
@ -416,23 +441,30 @@ public class AiModelFactoryImpl implements AiModelFactory {
}
/**
* {@link MiniMaxAutoConfiguration} miniMaxChatModel
* {@link MiniMaxChatAutoConfiguration} miniMaxChatModel
*/
private MiniMaxChatModel buildMiniMaxChatModel(String apiKey, String url) {
MiniMaxApi miniMaxApi = StrUtil.isEmpty(url) ? new MiniMaxApi(apiKey)
: new MiniMaxApi(url, apiKey);
MiniMaxChatOptions options = MiniMaxChatOptions.builder().model(MiniMaxApi.DEFAULT_CHAT_MODEL).temperature(0.7).build();
return new MiniMaxChatModel(miniMaxApi, options, getFunctionCallbackResolver(), DEFAULT_RETRY_TEMPLATE);
return new MiniMaxChatModel(miniMaxApi, options, getToolCallingManager(), DEFAULT_RETRY_TEMPLATE);
}
/**
* {@link MoonshotAutoConfiguration} moonshotChatModel
* {@link MoonshotChatAutoConfiguration} moonshotChatModel
*/
private MoonshotChatModel buildMoonshotChatModel(String apiKey, String url) {
MoonshotApi moonshotApi = StrUtil.isEmpty(url)? new MoonshotApi(apiKey)
: new MoonshotApi(url, apiKey);
MoonshotApi.Builder moonshotApiBuilder = MoonshotApi.builder()
.apiKey(apiKey);
if (StrUtil.isNotEmpty(url)) {
moonshotApiBuilder.baseUrl(url);
}
MoonshotChatOptions options = MoonshotChatOptions.builder().model(MoonshotApi.DEFAULT_CHAT_MODEL).build();
return new MoonshotChatModel(moonshotApi, options, getFunctionCallbackResolver(), DEFAULT_RETRY_TEMPLATE);
return MoonshotChatModel.builder()
.moonshotApi(moonshotApiBuilder.build())
.defaultOptions(options)
.toolCallingManager(getToolCallingManager())
.build();
}
/**
@ -456,33 +488,32 @@ public class AiModelFactoryImpl implements AiModelFactory {
}
/**
* {@link OpenAiAutoConfiguration} openAiChatModel
* {@link OpenAiChatAutoConfiguration} openAiChatModel
*/
private static OpenAiChatModel buildOpenAiChatModel(String openAiToken, String url) {
url = StrUtil.blankToDefault(url, OpenAiApiConstants.DEFAULT_BASE_URL);
OpenAiApi openAiApi = OpenAiApi.builder().baseUrl(url).apiKey(openAiToken).build();
return OpenAiChatModel.builder().openAiApi(openAiApi).toolCallingManager(getToolCallingManager()).build();
return OpenAiChatModel.builder()
.openAiApi(openAiApi)
.toolCallingManager(getToolCallingManager())
.build();
}
// TODO @芋艿:手头暂时没密钥,使用建议再测试下
/**
* {@link AzureOpenAiAutoConfiguration}
* {@link AzureOpenAiChatAutoConfiguration}
*/
private static AzureOpenAiChatModel buildAzureOpenAiChatModel(String apiKey, String url) {
AzureOpenAiAutoConfiguration azureOpenAiAutoConfiguration = new AzureOpenAiAutoConfiguration();
// 创建 OpenAIClient 对象
AzureOpenAiConnectionProperties connectionProperties = new AzureOpenAiConnectionProperties();
connectionProperties.setApiKey(apiKey);
connectionProperties.setEndpoint(url);
OpenAIClientBuilder openAIClient = azureOpenAiAutoConfiguration.openAIClientBuilder(connectionProperties, null);
// 获取 AzureOpenAiChatProperties 对象
AzureOpenAiChatProperties chatProperties = SpringUtil.getBean(AzureOpenAiChatProperties.class);
return azureOpenAiAutoConfiguration.azureOpenAiChatModel(openAIClient, chatProperties,
getToolCallingManager(), null, null);
// TODO @芋艿:使用前,请测试,暂时没密钥!!!
OpenAIClientBuilder openAIClientBuilder = new OpenAIClientBuilder()
.endpoint(url).credential(new KeyCredential(apiKey));
return AzureOpenAiChatModel.builder()
.openAIClientBuilder(openAIClientBuilder)
.toolCallingManager(getToolCallingManager())
.build();
}
/**
* {@link OpenAiAutoConfiguration} openAiImageModel
* {@link OpenAiImageAutoConfiguration} openAiImageModel
*/
private OpenAiImageModel buildOpenAiImageModel(String openAiToken, String url) {
url = StrUtil.blankToDefault(url, OpenAiApiConstants.DEFAULT_BASE_URL);
@ -500,11 +531,14 @@ public class AiModelFactoryImpl implements AiModelFactory {
}
/**
* {@link OllamaAutoConfiguration} ollamaApi
* {@link OllamaChatAutoConfiguration} ollamaChatModel
*/
private static OllamaChatModel buildOllamaChatModel(String url) {
OllamaApi ollamaApi = new OllamaApi(url);
return OllamaChatModel.builder().ollamaApi(ollamaApi).toolCallingManager(getToolCallingManager()).build();
OllamaApi ollamaApi = OllamaApi.builder().baseUrl(url).build();
return OllamaChatModel.builder()
.ollamaApi(ollamaApi)
.toolCallingManager(getToolCallingManager())
.build();
}
/**
@ -519,16 +553,16 @@ public class AiModelFactoryImpl implements AiModelFactory {
// ========== 各种创建 EmbeddingModel 的方法 ==========
/**
* {@link DashScopeAutoConfiguration} dashscopeEmbeddingModel
* {@link DashScopeEmbeddingAutoConfiguration} dashscopeEmbeddingModel
*/
private DashScopeEmbeddingModel buildTongYiEmbeddingModel(String apiKey, String model) {
DashScopeApi dashScopeApi = new DashScopeApi(apiKey);
DashScopeApi dashScopeApi = DashScopeApi.builder().apiKey(apiKey).build();
DashScopeEmbeddingOptions dashScopeEmbeddingOptions = DashScopeEmbeddingOptions.builder().withModel(model).build();
return new DashScopeEmbeddingModel(dashScopeApi, MetadataMode.EMBED, dashScopeEmbeddingOptions);
}
/**
* {@link ZhiPuAiAutoConfiguration} zhiPuAiEmbeddingModel
* {@link ZhiPuAiEmbeddingAutoConfiguration} zhiPuAiEmbeddingModel
*/
private ZhiPuAiEmbeddingModel buildZhiPuEmbeddingModel(String apiKey, String url, String model) {
ZhiPuAiApi zhiPuAiApi = StrUtil.isEmpty(url) ? new ZhiPuAiApi(apiKey)
@ -538,7 +572,7 @@ public class AiModelFactoryImpl implements AiModelFactory {
}
/**
* {@link MiniMaxAutoConfiguration} miniMaxEmbeddingModel
* {@link MiniMaxEmbeddingAutoConfiguration} miniMaxEmbeddingModel
*/
private EmbeddingModel buildMiniMaxEmbeddingModel(String apiKey, String url, String model) {
MiniMaxApi miniMaxApi = StrUtil.isEmpty(url)? new MiniMaxApi(apiKey)
@ -548,7 +582,7 @@ public class AiModelFactoryImpl implements AiModelFactory {
}
/**
* {@link QianFanAutoConfiguration} qianFanEmbeddingModel
* {@link QianFanEmbeddingAutoConfiguration} qianFanEmbeddingModel
*/
private QianFanEmbeddingModel buildYiYanEmbeddingModel(String key, String model) {
List<String> keys = StrUtil.split(key, '|');
@ -561,13 +595,16 @@ public class AiModelFactoryImpl implements AiModelFactory {
}
private OllamaEmbeddingModel buildOllamaEmbeddingModel(String url, String model) {
OllamaApi ollamaApi = new OllamaApi(url);
OllamaApi ollamaApi = OllamaApi.builder().baseUrl(url).build();
OllamaOptions ollamaOptions = OllamaOptions.builder().model(model).build();
return OllamaEmbeddingModel.builder().ollamaApi(ollamaApi).defaultOptions(ollamaOptions).build();
return OllamaEmbeddingModel.builder()
.ollamaApi(ollamaApi)
.defaultOptions(ollamaOptions)
.build();
}
/**
* {@link OpenAiAutoConfiguration} openAiEmbeddingModel
* {@link OpenAiEmbeddingAutoConfiguration} openAiEmbeddingModel
*/
private OpenAiEmbeddingModel buildOpenAiEmbeddingModel(String openAiToken, String url, String model) {
url = StrUtil.blankToDefault(url, OpenAiApiConstants.DEFAULT_BASE_URL);
@ -576,21 +613,19 @@ public class AiModelFactoryImpl implements AiModelFactory {
return new OpenAiEmbeddingModel(openAiApi, MetadataMode.EMBED, openAiEmbeddingProperties);
}
// TODO @芋艿:手头暂时没密钥,使用建议再测试下
/**
* {@link AzureOpenAiAutoConfiguration} azureOpenAiEmbeddingModel
* {@link AzureOpenAiEmbeddingAutoConfiguration} azureOpenAiEmbeddingModel
*/
private AzureOpenAiEmbeddingModel buildAzureOpenAiEmbeddingModel(String apiKey, String url, String model) {
AzureOpenAiAutoConfiguration azureOpenAiAutoConfiguration = new AzureOpenAiAutoConfiguration();
// 创建 OpenAIClient 对象
AzureOpenAiConnectionProperties connectionProperties = new AzureOpenAiConnectionProperties();
connectionProperties.setApiKey(apiKey);
connectionProperties.setEndpoint(url);
OpenAIClientBuilder openAIClient = azureOpenAiAutoConfiguration.openAIClientBuilder(connectionProperties, null);
// TODO @芋艿:手头暂时没密钥,使用建议再测试下
AzureOpenAiEmbeddingAutoConfiguration azureOpenAiAutoConfiguration = new AzureOpenAiEmbeddingAutoConfiguration();
// 创建 OpenAIClientBuilder 对象
OpenAIClientBuilder openAIClientBuilder = new OpenAIClientBuilder()
.endpoint(url).credential(new KeyCredential(apiKey));
// 获取 AzureOpenAiChatProperties 对象
AzureOpenAiEmbeddingProperties embeddingProperties = SpringUtil.getBean(AzureOpenAiEmbeddingProperties.class);
return azureOpenAiAutoConfiguration.azureOpenAiEmbeddingModel(openAIClient, embeddingProperties,
null, null);
return azureOpenAiAutoConfiguration.azureOpenAiEmbeddingModel(openAIClientBuilder, embeddingProperties,
getObservationRegistry(), getEmbeddingModelObservationConvention());
}
// ========== 各种创建 VectorStore 的方法 ==========
@ -655,12 +690,12 @@ public class AiModelFactoryImpl implements AiModelFactory {
Map<String, Class<?>> metadataFields) {
// 创建 JedisPooled 对象
RedisProperties redisProperties = SpringUtils.getBean(RedisProperties.class);
JedisPooled jedisPooled = new JedisPooled(redisProperties.getHost(), redisProperties.getPort());
JedisPooled jedisPooled = new JedisPooled(redisProperties.getHost(), redisProperties.getPort(),
redisProperties.getUsername(), redisProperties.getPassword());
// 创建 RedisVectorStoreProperties 对象
RedisVectorStoreAutoConfiguration configuration = new RedisVectorStoreAutoConfiguration();
RedisVectorStoreProperties properties = SpringUtil.getBean(RedisVectorStoreProperties.class);
RedisVectorStore redisVectorStore = RedisVectorStore.builder(jedisPooled, embeddingModel)
.indexName(properties.getIndex()).prefix(properties.getPrefix())
.indexName(properties.getIndexName()).prefix(properties.getPrefix())
.initializeSchema(properties.isInitializeSchema())
.metadataFields(convertList(metadataFields.entrySet(), entry -> {
String fieldName = entry.getKey();
@ -730,10 +765,12 @@ public class AiModelFactoryImpl implements AiModelFactory {
private static ObjectProvider<VectorStoreObservationConvention> getCustomObservationConvention() {
return new ObjectProvider<>() {
@Override
public VectorStoreObservationConvention getObject() throws BeansException {
return new DefaultVectorStoreObservationConvention();
}
};
}
@ -745,8 +782,15 @@ public class AiModelFactoryImpl implements AiModelFactory {
return SpringUtil.getBean(ToolCallingManager.class);
}
private static FunctionCallbackResolver getFunctionCallbackResolver() {
return SpringUtil.getBean(FunctionCallbackResolver.class);
private static ObjectProvider<EmbeddingModelObservationConvention> getEmbeddingModelObservationConvention() {
return new ObjectProvider<>() {
@Override
public EmbeddingModelObservationConvention getObject() throws BeansException {
return SpringUtil.getBean(EmbeddingModelObservationConvention.class);
}
};
}
}

View File

@ -1,45 +0,0 @@
package cn.iocoder.yudao.module.ai.framework.ai.core.model.deepseek;
import lombok.RequiredArgsConstructor;
import lombok.extern.slf4j.Slf4j;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.chat.model.ChatResponse;
import org.springframework.ai.chat.prompt.ChatOptions;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.openai.OpenAiChatModel;
import reactor.core.publisher.Flux;
/**
* DeepSeek {@link ChatModel}
*
* @author fansili
*/
@Slf4j
@RequiredArgsConstructor
public class DeepSeekChatModel implements ChatModel {
public static final String BASE_URL = "https://api.deepseek.com";
public static final String MODEL_DEFAULT = "deepseek-chat";
/**
* OpenAI
*/
private final OpenAiChatModel openAiChatModel;
@Override
public ChatResponse call(Prompt prompt) {
return openAiChatModel.call(prompt);
}
@Override
public Flux<ChatResponse> stream(Prompt prompt) {
return openAiChatModel.stream(prompt);
}
@Override
public ChatOptions getDefaultOptions() {
return openAiChatModel.getDefaultOptions();
}
}

View File

@ -46,94 +46,94 @@ import java.util.List;
*/
public class SiliconFlowImageModel implements ImageModel {
private static final Logger logger = LoggerFactory.getLogger(SiliconFlowImageModel.class);
private static final Logger logger = LoggerFactory.getLogger(SiliconFlowImageModel.class);
private static final ImageModelObservationConvention DEFAULT_OBSERVATION_CONVENTION = new DefaultImageModelObservationConvention();
private static final ImageModelObservationConvention DEFAULT_OBSERVATION_CONVENTION = new DefaultImageModelObservationConvention();
private final SiliconFlowImageOptions defaultOptions;
private final SiliconFlowImageOptions defaultOptions;
private final RetryTemplate retryTemplate;
private final RetryTemplate retryTemplate;
private final SiliconFlowImageApi siliconFlowImageApi;
private final SiliconFlowImageApi siliconFlowImageApi;
private final ObservationRegistry observationRegistry;
private final ObservationRegistry observationRegistry;
@Setter
private ImageModelObservationConvention observationConvention = DEFAULT_OBSERVATION_CONVENTION;
private ImageModelObservationConvention observationConvention = DEFAULT_OBSERVATION_CONVENTION;
public SiliconFlowImageModel(SiliconFlowImageApi siliconFlowImageApi) {
this(siliconFlowImageApi, SiliconFlowImageOptions.builder().build(), RetryUtils.DEFAULT_RETRY_TEMPLATE);
}
public SiliconFlowImageModel(SiliconFlowImageApi siliconFlowImageApi) {
this(siliconFlowImageApi, SiliconFlowImageOptions.builder().build(), RetryUtils.DEFAULT_RETRY_TEMPLATE);
}
public SiliconFlowImageModel(SiliconFlowImageApi siliconFlowImageApi, SiliconFlowImageOptions options, RetryTemplate retryTemplate) {
this(siliconFlowImageApi, options, retryTemplate, ObservationRegistry.NOOP);
}
public SiliconFlowImageModel(SiliconFlowImageApi siliconFlowImageApi, SiliconFlowImageOptions options, RetryTemplate retryTemplate) {
this(siliconFlowImageApi, options, retryTemplate, ObservationRegistry.NOOP);
}
public SiliconFlowImageModel(SiliconFlowImageApi siliconFlowImageApi, SiliconFlowImageOptions options, RetryTemplate retryTemplate,
public SiliconFlowImageModel(SiliconFlowImageApi siliconFlowImageApi, SiliconFlowImageOptions options, RetryTemplate retryTemplate,
ObservationRegistry observationRegistry) {
Assert.notNull(siliconFlowImageApi, "OpenAiImageApi must not be null");
Assert.notNull(options, "options must not be null");
Assert.notNull(retryTemplate, "retryTemplate must not be null");
Assert.notNull(observationRegistry, "observationRegistry must not be null");
this.siliconFlowImageApi = siliconFlowImageApi;
this.defaultOptions = options;
this.retryTemplate = retryTemplate;
this.observationRegistry = observationRegistry;
}
Assert.notNull(siliconFlowImageApi, "OpenAiImageApi must not be null");
Assert.notNull(options, "options must not be null");
Assert.notNull(retryTemplate, "retryTemplate must not be null");
Assert.notNull(observationRegistry, "observationRegistry must not be null");
this.siliconFlowImageApi = siliconFlowImageApi;
this.defaultOptions = options;
this.retryTemplate = retryTemplate;
this.observationRegistry = observationRegistry;
}
@Override
public ImageResponse call(ImagePrompt imagePrompt) {
@Override
public ImageResponse call(ImagePrompt imagePrompt) {
SiliconFlowImageOptions requestImageOptions = mergeOptions(imagePrompt.getOptions(), this.defaultOptions);
SiliconFlowImageApi.SiliconflowImageRequest imageRequest = createRequest(imagePrompt, requestImageOptions);
var observationContext = ImageModelObservationContext.builder()
.imagePrompt(imagePrompt)
.provider(SiliconFlowApiConstants.PROVIDER_NAME)
.requestOptions(imagePrompt.getOptions())
.build();
var observationContext = ImageModelObservationContext.builder()
.imagePrompt(imagePrompt)
.provider(SiliconFlowApiConstants.PROVIDER_NAME)
.imagePrompt(imagePrompt)
.build();
return ImageModelObservationDocumentation.IMAGE_MODEL_OPERATION
.observation(this.observationConvention, DEFAULT_OBSERVATION_CONVENTION, () -> observationContext,
this.observationRegistry)
.observe(() -> {
ResponseEntity<OpenAiImageApi.OpenAiImageResponse> imageResponseEntity = this.retryTemplate
.execute(ctx -> this.siliconFlowImageApi.createImage(imageRequest));
return ImageModelObservationDocumentation.IMAGE_MODEL_OPERATION
.observation(this.observationConvention, DEFAULT_OBSERVATION_CONVENTION, () -> observationContext,
this.observationRegistry)
.observe(() -> {
ResponseEntity<OpenAiImageApi.OpenAiImageResponse> imageResponseEntity = this.retryTemplate
.execute(ctx -> this.siliconFlowImageApi.createImage(imageRequest));
ImageResponse imageResponse = convertResponse(imageResponseEntity, imageRequest);
ImageResponse imageResponse = convertResponse(imageResponseEntity, imageRequest);
observationContext.setResponse(imageResponse);
observationContext.setResponse(imageResponse);
return imageResponse;
});
}
return imageResponse;
});
}
private SiliconFlowImageApi.SiliconflowImageRequest createRequest(ImagePrompt imagePrompt,
private SiliconFlowImageApi.SiliconflowImageRequest createRequest(ImagePrompt imagePrompt,
SiliconFlowImageOptions requestImageOptions) {
String instructions = imagePrompt.getInstructions().get(0).getText();
String instructions = imagePrompt.getInstructions().get(0).getText();
SiliconFlowImageApi.SiliconflowImageRequest imageRequest = new SiliconFlowImageApi.SiliconflowImageRequest(instructions,
SiliconFlowImageApi.SiliconflowImageRequest imageRequest = new SiliconFlowImageApi.SiliconflowImageRequest(instructions,
SiliconFlowApiConstants.DEFAULT_IMAGE_MODEL);
return ModelOptionsUtils.merge(requestImageOptions, imageRequest, SiliconFlowImageApi.SiliconflowImageRequest.class);
}
return ModelOptionsUtils.merge(requestImageOptions, imageRequest, SiliconFlowImageApi.SiliconflowImageRequest.class);
}
private ImageResponse convertResponse(ResponseEntity<OpenAiImageApi.OpenAiImageResponse> imageResponseEntity,
SiliconFlowImageApi.SiliconflowImageRequest siliconflowImageRequest) {
OpenAiImageApi.OpenAiImageResponse imageApiResponse = imageResponseEntity.getBody();
if (imageApiResponse == null) {
logger.warn("No image response returned for request: {}", siliconflowImageRequest);
return new ImageResponse(List.of());
}
private ImageResponse convertResponse(ResponseEntity<OpenAiImageApi.OpenAiImageResponse> imageResponseEntity,
SiliconFlowImageApi.SiliconflowImageRequest siliconflowImageRequest) {
OpenAiImageApi.OpenAiImageResponse imageApiResponse = imageResponseEntity.getBody();
if (imageApiResponse == null) {
logger.warn("No image response returned for request: {}", siliconflowImageRequest);
return new ImageResponse(List.of());
}
List<ImageGeneration> imageGenerationList = imageApiResponse.data()
.stream()
.map(entry -> new ImageGeneration(new Image(entry.url(), entry.b64Json()),
new OpenAiImageGenerationMetadata(entry.revisedPrompt())))
.toList();
List<ImageGeneration> imageGenerationList = imageApiResponse.data()
.stream()
.map(entry -> new ImageGeneration(new Image(entry.url(), entry.b64Json()),
new OpenAiImageGenerationMetadata(entry.revisedPrompt())))
.toList();
ImageResponseMetadata openAiImageResponseMetadata = new ImageResponseMetadata(imageApiResponse.created());
return new ImageResponse(imageGenerationList, openAiImageResponseMetadata);
}
ImageResponseMetadata openAiImageResponseMetadata = new ImageResponseMetadata(imageApiResponse.created());
return new ImageResponse(imageGenerationList, openAiImageResponseMetadata);
}
private SiliconFlowImageOptions mergeOptions(@Nullable ImageOptions runtimeOptions, SiliconFlowImageOptions defaultOptions) {
var runtimeOptionsForProvider = ModelOptionsUtils.copyToTarget(runtimeOptions, ImageOptions.class,

View File

@ -29,12 +29,12 @@ import cn.iocoder.yudao.module.infra.api.file.FileApi;
import com.alibaba.cloud.ai.dashscope.image.DashScopeImageOptions;
import jakarta.annotation.Resource;
import lombok.extern.slf4j.Slf4j;
import org.springaicommunity.qianfan.QianFanImageOptions;
import org.springframework.ai.image.ImageModel;
import org.springframework.ai.image.ImageOptions;
import org.springframework.ai.image.ImagePrompt;
import org.springframework.ai.image.ImageResponse;
import org.springframework.ai.openai.OpenAiImageOptions;
import org.springframework.ai.qianfan.QianFanImageOptions;
import org.springframework.ai.stabilityai.api.StabilityAiImageOptions;
import org.springframework.ai.zhipuai.ZhiPuAiImageOptions;
import org.springframework.scheduling.annotation.Async;
@ -140,10 +140,10 @@ public class AiImageServiceImpl implements AiImageService {
private static ImageOptions buildImageOptions(AiImageDrawReqVO draw, AiModelDO model) {
if (ObjUtil.equal(model.getPlatform(), AiPlatformEnum.OPENAI.getPlatform())) {
// https://platform.openai.com/docs/api-reference/images/create
return OpenAiImageOptions.builder().withModel(model.getModel())
.withHeight(draw.getHeight()).withWidth(draw.getWidth())
.withStyle(MapUtil.getStr(draw.getOptions(), "style")) // 风格
.withResponseFormat("b64_json")
return OpenAiImageOptions.builder().model(model.getModel())
.height(draw.getHeight()).width(draw.getWidth())
.style(MapUtil.getStr(draw.getOptions(), "style")) // 风格
.responseFormat("b64_json")
.build();
} else if (ObjUtil.equal(model.getPlatform(), AiPlatformEnum.SILICON_FLOW.getPlatform())) {
// https://docs.siliconflow.cn/cn/api-reference/images/images-generations

View File

@ -7,6 +7,8 @@ import cn.iocoder.yudao.framework.tenant.core.util.TenantUtils;
import cn.iocoder.yudao.module.system.api.user.AdminUserApi;
import cn.iocoder.yudao.module.system.api.user.dto.AdminUserRespDTO;
import com.fasterxml.jackson.annotation.JsonClassDescription;
import com.fasterxml.jackson.annotation.JsonProperty;
import com.fasterxml.jackson.annotation.JsonPropertyDescription;
import jakarta.annotation.Resource;
import lombok.AllArgsConstructor;
import lombok.Data;
@ -17,7 +19,7 @@ import org.springframework.stereotype.Component;
import java.util.function.BiFunction;
/**
*
*
*
* ToolContext 使
*
@ -31,8 +33,17 @@ public class UserProfileQueryToolFunction
private AdminUserApi adminUserApi;
@Data
@JsonClassDescription("当前用户信息查询")
public static class Request { }
@JsonClassDescription("用户信息查询")
public static class Request {
/**
*
*/
@JsonProperty(value = "id")
@JsonPropertyDescription("用户编号例如说1。如果查询自己则 id 为空")
private Long id;
}
@Data
@AllArgsConstructor
@ -61,13 +72,19 @@ public class UserProfileQueryToolFunction
@Override
public Response apply(Request request, ToolContext toolContext) {
LoginUser loginUser = (LoginUser) toolContext.getContext().get(AiUtils.TOOL_CONTEXT_LOGIN_USER);
Long tenantId = (Long) toolContext.getContext().get(AiUtils.TOOL_CONTEXT_TENANT_ID);
if (loginUser == null | tenantId == null) {
return null;
if (tenantId == null) {
return new Response();
}
if (request.getId() == null) {
LoginUser loginUser = (LoginUser) toolContext.getContext().get(AiUtils.TOOL_CONTEXT_LOGIN_USER);
if (loginUser == null) {
return new Response();
}
request.setId(loginUser.getId());
}
return TenantUtils.execute(tenantId, () -> {
AdminUserRespDTO user = adminUserApi.getUser(loginUser.getId()).getCheckedData();
AdminUserRespDTO user = adminUserApi.getUser(request.getId()).getCheckedData();
return BeanUtils.toBean(user, Response.class);
});
}

View File

@ -2,18 +2,18 @@ package cn.iocoder.yudao.module.ai.util;
import cn.hutool.core.util.ObjUtil;
import cn.hutool.core.util.StrUtil;
import cn.iocoder.yudao.module.ai.enums.model.AiPlatformEnum;
import cn.iocoder.yudao.framework.security.core.util.SecurityFrameworkUtils;
import cn.iocoder.yudao.framework.tenant.core.context.TenantContextHolder;
import cn.iocoder.yudao.module.ai.enums.model.AiPlatformEnum;
import com.alibaba.cloud.ai.dashscope.chat.DashScopeChatOptions;
import org.springaicommunity.moonshot.MoonshotChatOptions;
import org.springaicommunity.qianfan.QianFanChatOptions;
import org.springframework.ai.azure.openai.AzureOpenAiChatOptions;
import org.springframework.ai.chat.messages.*;
import org.springframework.ai.chat.prompt.ChatOptions;
import org.springframework.ai.minimax.MiniMaxChatOptions;
import org.springframework.ai.moonshot.MoonshotChatOptions;
import org.springframework.ai.ollama.api.OllamaOptions;
import org.springframework.ai.openai.OpenAiChatOptions;
import org.springframework.ai.qianfan.QianFanChatOptions;
import org.springframework.ai.zhipuai.ZhiPuAiChatOptions;
import java.util.Collections;
@ -43,18 +43,18 @@ public class AiUtils {
switch (platform) {
case TONG_YI:
return DashScopeChatOptions.builder().withModel(model).withTemperature(temperature).withMaxToken(maxTokens)
.withFunctions(toolNames).withToolContext(toolContext).build();
.withToolNames(toolNames).withToolContext(toolContext).build();
case YI_YAN:
return QianFanChatOptions.builder().model(model).temperature(temperature).maxTokens(maxTokens).build();
case ZHI_PU:
return ZhiPuAiChatOptions.builder().model(model).temperature(temperature).maxTokens(maxTokens)
.functions(toolNames).toolContext(toolContext).build();
.toolNames(toolNames).toolContext(toolContext).build();
case MINI_MAX:
return MiniMaxChatOptions.builder().model(model).temperature(temperature).maxTokens(maxTokens)
.functions(toolNames).toolContext(toolContext).build();
.toolNames(toolNames).toolContext(toolContext).build();
case MOONSHOT:
return MoonshotChatOptions.builder().model(model).temperature(temperature).maxTokens(maxTokens)
.functions(toolNames).toolContext(toolContext).build();
.toolNames(toolNames).toolContext(toolContext).build();
case OPENAI:
case DEEP_SEEK: // 复用 OpenAI 客户端
case DOU_BAO: // 复用 OpenAI 客户端

View File

@ -20,8 +20,8 @@ spring:
# 数据源配置项
autoconfigure:
exclude:
- org.springframework.ai.autoconfigure.vectorstore.qdrant.QdrantVectorStoreAutoConfiguration # 禁用 AI 模块的 Qdrant手动创建
- org.springframework.ai.autoconfigure.vectorstore.milvus.MilvusVectorStoreAutoConfiguration # 禁用 AI 模块的 Milvus手动创建
- org.springframework.ai.vectorstore.qdrant.autoconfigure.QdrantVectorStoreAutoConfiguration # 禁用 AI 模块的 Qdrant手动创建
- org.springframework.ai.vectorstore.milvus.autoconfigure.MilvusVectorStoreAutoConfiguration # 禁用 AI 模块的 Milvus手动创建
datasource:
druid: # Druid 【监控】相关的全局配置
web-stat-filter:

View File

@ -21,8 +21,8 @@ spring:
autoconfigure:
exclude:
- de.codecentric.boot.admin.client.config.SpringBootAdminClientAutoConfiguration # 禁用 Spring Boot Admin 的 Client 的自动配置
- org.springframework.ai.autoconfigure.vectorstore.qdrant.QdrantVectorStoreAutoConfiguration # 禁用 AI 模块的 Qdrant手动创建
- org.springframework.ai.autoconfigure.vectorstore.milvus.MilvusVectorStoreAutoConfiguration # 禁用 AI 模块的 Milvus手动创建
- org.springframework.ai.vectorstore.qdrant.autoconfigure.QdrantVectorStoreAutoConfiguration # 禁用 AI 模块的 Qdrant手动创建
- org.springframework.ai.vectorstore.milvus.autoconfigure.MilvusVectorStoreAutoConfiguration # 禁用 AI 模块的 Milvus手动创建
datasource:
druid: # Druid 【监控】相关的全局配置
web-stat-filter:

View File

@ -107,7 +107,7 @@ spring:
vectorstore: # 向量存储
redis:
initialize-schema: true
index: knowledge_index # Redis 中向量索引的名称:用于存储和检索向量数据的索引标识符,所有相关的向量搜索操作都会基于这个索引进行
index-name: knowledge_index # Redis 中向量索引的名称:用于存储和检索向量数据的索引标识符,所有相关的向量搜索操作都会基于这个索引进行
prefix: "knowledge_segment:" # Redis 中存储向量数据的键名前缀:这个前缀会添加到每个存储在 Redis 中的向量数据键名前,每个 document 都是一个 hash 结构
qdrant:
initialize-schema: true
@ -145,13 +145,14 @@ spring:
api-key: xxxx
moonshot: # 月之暗灭KIMI
api-key: sk-abc
deepseek: # DeepSeek
api-key: sk-e94db327cc7d457d99a8de8810fc6b12
chat:
options:
model: deepseek-chat
yudao:
ai:
deep-seek: # DeepSeek
enable: true
api-key: sk-e94db327cc7d457d99a8de8810fc6b12
model: deepseek-chat
doubao: # 字节豆包
enable: true
api-key: 5c1b5747-26d2-4ebd-a4e0-dd0e8d8b4272

View File

@ -2,7 +2,6 @@ package cn.iocoder.yudao.module.ai.framework.ai.core.model.chat;
import com.azure.ai.openai.OpenAIClientBuilder;
import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.util.ClientOptions;
import org.junit.jupiter.api.Disabled;
import org.junit.jupiter.api.Test;
import org.springframework.ai.azure.openai.AzureOpenAiChatModel;
@ -17,7 +16,7 @@ import reactor.core.publisher.Flux;
import java.util.ArrayList;
import java.util.List;
import static org.springframework.ai.autoconfigure.azure.openai.AzureOpenAiChatProperties.DEFAULT_DEPLOYMENT_NAME;
import static org.springframework.ai.model.azure.openai.autoconfigure.AzureOpenAiChatProperties.DEFAULT_DEPLOYMENT_NAME;
/**
* {@link AzureOpenAiChatModel}
@ -29,10 +28,13 @@ public class AzureOpenAIChatModelTests {
// TODO @芋艿:晚点在调整
private final OpenAIClientBuilder openAiApi = new OpenAIClientBuilder()
.endpoint("https://eastusprejade.openai.azure.com")
.credential(new AzureKeyCredential("xxx"))
.clientOptions((new ClientOptions()).setApplicationId("spring-ai"));
private final AzureOpenAiChatModel chatModel = new AzureOpenAiChatModel(openAiApi,
AzureOpenAiChatOptions.builder().deploymentName(DEFAULT_DEPLOYMENT_NAME).build());
.credential(new AzureKeyCredential("xxx"));
private final AzureOpenAiChatModel chatModel = AzureOpenAiChatModel.builder()
.openAIClientBuilder(openAiApi)
.defaultOptions(AzureOpenAiChatOptions.builder()
.deploymentName(DEFAULT_DEPLOYMENT_NAME)
.build())
.build();
@Test
@Disabled

View File

@ -1,7 +1,6 @@
package cn.iocoder.yudao.module.ai.framework.ai.core.model.chat;
import cn.iocoder.yudao.module.ai.framework.ai.core.model.baichuan.BaiChuanChatModel;
import cn.iocoder.yudao.module.ai.framework.ai.core.model.deepseek.DeepSeekChatModel;
import org.junit.jupiter.api.Disabled;
import org.junit.jupiter.api.Test;
import org.springframework.ai.chat.messages.Message;
@ -35,7 +34,7 @@ public class BaiChuanChatModelTests {
.build())
.build();
private final DeepSeekChatModel chatModel = new DeepSeekChatModel(openAiChatModel);
private final BaiChuanChatModel chatModel = new BaiChuanChatModel(openAiChatModel);
@Test
@Disabled

View File

@ -1,6 +1,5 @@
package cn.iocoder.yudao.module.ai.framework.ai.core.model.chat;
import cn.iocoder.yudao.module.ai.framework.ai.core.model.deepseek.DeepSeekChatModel;
import org.junit.jupiter.api.Disabled;
import org.junit.jupiter.api.Test;
import org.springframework.ai.chat.messages.Message;
@ -8,9 +7,9 @@ import org.springframework.ai.chat.messages.SystemMessage;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.model.ChatResponse;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.openai.OpenAiChatModel;
import org.springframework.ai.openai.OpenAiChatOptions;
import org.springframework.ai.openai.api.OpenAiApi;
import org.springframework.ai.deepseek.DeepSeekChatModel;
import org.springframework.ai.deepseek.DeepSeekChatOptions;
import org.springframework.ai.deepseek.api.DeepSeekApi;
import reactor.core.publisher.Flux;
import java.util.ArrayList;
@ -23,19 +22,16 @@ import java.util.List;
*/
public class DeepSeekChatModelTests {
private final OpenAiChatModel openAiChatModel = OpenAiChatModel.builder()
.openAiApi(OpenAiApi.builder()
.baseUrl(DeepSeekChatModel.BASE_URL)
.apiKey("sk-e52047409b144d97b791a6a46a2d") // apiKey
private final DeepSeekChatModel chatModel = DeepSeekChatModel.builder()
.deepSeekApi(DeepSeekApi.builder()
.apiKey("sk-eaf4172a057344dd9bc64b1f806b6axx") // apiKey
.build())
.defaultOptions(OpenAiChatOptions.builder()
.defaultOptions(DeepSeekChatOptions.builder()
.model("deepseek-chat") // 模型
.temperature(0.7)
.build())
.build();
private final DeepSeekChatModel chatModel = new DeepSeekChatModel(openAiChatModel);
@Test
@Disabled
public void testCall() {

View File

@ -1,20 +1,6 @@
package cn.iocoder.yudao.module.ai.framework.ai.core.model.chat;
import org.junit.jupiter.api.Disabled;
import org.junit.jupiter.api.Test;
import org.springframework.ai.chat.messages.Message;
import org.springframework.ai.chat.messages.SystemMessage;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.model.ChatResponse;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.ollama.OllamaChatModel;
import org.springframework.ai.ollama.api.OllamaApi;
import org.springframework.ai.ollama.api.OllamaModel;
import org.springframework.ai.ollama.api.OllamaOptions;
import reactor.core.publisher.Flux;
import java.util.ArrayList;
import java.util.List;
/**
* {@link OllamaChatModel}
@ -23,43 +9,43 @@ import java.util.List;
*/
public class LlamaChatModelTests {
private final OllamaChatModel chatModel = OllamaChatModel.builder()
.ollamaApi(new OllamaApi("http://127.0.0.1:11434")) // Ollama 服务地址
.defaultOptions(OllamaOptions.builder()
.model(OllamaModel.LLAMA3.getName()) // 模型
.build())
.build();
@Test
@Disabled
public void testCall() {
// 准备参数
List<Message> messages = new ArrayList<>();
messages.add(new SystemMessage("你是一个优质的文言文作者,用文言文描述着各城市的人文风景。"));
messages.add(new UserMessage("1 + 1 = "));
// 调用
ChatResponse response = chatModel.call(new Prompt(messages));
// 打印结果
System.out.println(response);
System.out.println(response.getResult().getOutput());
}
@Test
@Disabled
public void testStream() {
// 准备参数
List<Message> messages = new ArrayList<>();
messages.add(new SystemMessage("你是一个优质的文言文作者,用文言文描述着各城市的人文风景。"));
messages.add(new UserMessage("1 + 1 = "));
// 调用
Flux<ChatResponse> flux = chatModel.stream(new Prompt(messages));
// 打印结果
flux.doOnNext(response -> {
// System.out.println(response);
System.out.println(response.getResult().getOutput());
}).then().block();
}
// private final OllamaChatModel chatModel = OllamaChatModel.builder()
// .ollamaApi(new OllamaApi("http://127.0.0.1:11434")) // Ollama 服务地址
// .defaultOptions(OllamaOptions.builder()
// .model(OllamaModel.LLAMA3.getName()) // 模型
// .build())
// .build();
//
// @Test
// @Disabled
// public void testCall() {
// // 准备参数
// List<Message> messages = new ArrayList<>();
// messages.add(new SystemMessage("你是一个优质的文言文作者,用文言文描述着各城市的人文风景。"));
// messages.add(new UserMessage("1 + 1 = "));
//
// // 调用
// ChatResponse response = chatModel.call(new Prompt(messages));
// // 打印结果
// System.out.println(response);
// System.out.println(response.getResult().getOutput());
// }
//
// @Test
// @Disabled
// public void testStream() {
// // 准备参数
// List<Message> messages = new ArrayList<>();
// messages.add(new SystemMessage("你是一个优质的文言文作者,用文言文描述着各城市的人文风景。"));
// messages.add(new UserMessage("1 + 1 = "));
//
// // 调用
// Flux<ChatResponse> flux = chatModel.stream(new Prompt(messages));
// // 打印结果
// flux.doOnNext(response -> {
//// System.out.println(response);
// System.out.println(response.getResult().getOutput());
// }).then().block();
// }
}

View File

@ -2,14 +2,14 @@ package cn.iocoder.yudao.module.ai.framework.ai.core.model.chat;
import org.junit.jupiter.api.Disabled;
import org.junit.jupiter.api.Test;
import org.springaicommunity.moonshot.MoonshotChatModel;
import org.springaicommunity.moonshot.MoonshotChatOptions;
import org.springaicommunity.moonshot.api.MoonshotApi;
import org.springframework.ai.chat.messages.Message;
import org.springframework.ai.chat.messages.SystemMessage;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.model.ChatResponse;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.moonshot.MoonshotChatModel;
import org.springframework.ai.moonshot.MoonshotChatOptions;
import org.springframework.ai.moonshot.api.MoonshotApi;
import reactor.core.publisher.Flux;
import java.util.ArrayList;
@ -22,11 +22,15 @@ import java.util.List;
*/
public class MoonshotChatModelTests {
private final MoonshotChatModel chatModel = new MoonshotChatModel(
new MoonshotApi("sk-aHYYV1SARscItye5QQRRNbXij4fy65Ee7pNZlC9gsSQnUKXA"), // 密钥
MoonshotChatOptions.builder()
.model("moonshot-v1-8k") // 模型
.build());
private final MoonshotChatModel chatModel = MoonshotChatModel.builder()
.moonshotApi(MoonshotApi.builder()
.apiKey("sk-aHYYV1SARscItye5QQRRNbXij4fy65Ee7pNZlC9gsSQnUKXA") // 密钥
.build())
.defaultOptions(MoonshotChatOptions.builder()
.model("kimi-k2-0711-preview") // 模型
.build())
.build();
@Test
@Disabled
public void testCall() {

View File

@ -23,7 +23,9 @@ import java.util.List;
public class OllamaChatModelTests {
private final OllamaChatModel chatModel = OllamaChatModel.builder()
.ollamaApi(new OllamaApi("http://127.0.0.1:11434")) // Ollama 服务地址
.ollamaApi(OllamaApi.builder()
.baseUrl("http://127.0.0.1:11434") // Ollama 服务地址
.build())
.defaultOptions(OllamaOptions.builder()
// .model("qwen") // 模型https://ollama.com/library/qwen
.model("deepseek-r1") // 模型https://ollama.com/library/deepseek-r1

View File

@ -25,10 +25,10 @@ public class OpenAIChatModelTests {
private final OpenAiChatModel chatModel = OpenAiChatModel.builder()
.openAiApi(OpenAiApi.builder()
.baseUrl("https://api.holdai.top")
.apiKey("sk-aN6nWn3fILjrgLFT0fC4Aa60B72e4253826c77B29dC94f17") // apiKey
.apiKey("sk-PytRecQlmjEteoa2RRN6cGnwslo72UUPLQVNEMS6K9yjbmpD") // apiKey
.build())
.defaultOptions(OpenAiChatOptions.builder()
.model(OpenAiApi.ChatModel.GPT_4_O) // 模型
.model(OpenAiApi.ChatModel.GPT_4_1_NANO) // 模型
.temperature(0.7)
.build())
.build();

View File

@ -22,14 +22,17 @@ import java.util.List;
*/
public class TongYiChatModelTests {
private final DashScopeChatModel chatModel = new DashScopeChatModel(
new DashScopeApi("sk-7d903764249848cfa912733146da12d1"),
DashScopeChatOptions.builder()
private final DashScopeChatModel chatModel = DashScopeChatModel.builder()
.dashScopeApi(DashScopeApi.builder()
.apiKey("sk-47aa124781be4bfb95244cc62f63f7d0")
.build())
.defaultOptions( DashScopeChatOptions.builder()
.withModel("qwen1.5-72b-chat") // 模型
// .withModel("deepseek-r1") // 模型deepseek-r1
// .withModel("deepseek-v3") // 模型deepseek-v3
// .withModel("deepseek-r1-distill-qwen-1.5b") // 模型deepseek-r1-distill-qwen-1.5b
.build());
.build())
.build();
@Test
@Disabled

View File

@ -2,13 +2,13 @@ package cn.iocoder.yudao.module.ai.framework.ai.core.model.chat;
import org.junit.jupiter.api.Disabled;
import org.junit.jupiter.api.Test;
import org.springaicommunity.qianfan.QianFanChatModel;
import org.springaicommunity.qianfan.QianFanChatOptions;
import org.springaicommunity.qianfan.api.QianFanApi;
import org.springframework.ai.chat.messages.Message;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.model.ChatResponse;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.qianfan.QianFanChatModel;
import org.springframework.ai.qianfan.QianFanChatOptions;
import org.springframework.ai.qianfan.api.QianFanApi;
import reactor.core.publisher.Flux;
import java.util.ArrayList;
@ -23,9 +23,9 @@ import java.util.List;
public class YiYanChatModelTests {
private final QianFanChatModel chatModel = new QianFanChatModel(
new QianFanApi("qS8k8dYr2nXunagK4SSU8Xjj", "pHGbx51ql2f0hOyabQvSZezahVC3hh3e"), // 密钥
new QianFanApi("DGnyzREuaY7av7c38bOM9Ji2", "9aR8myflEOPDrEeLhoXv0FdqANOAyIZW"), // 密钥
QianFanChatOptions.builder()
.model(QianFanApi.ChatModel.ERNIE_4_0_8K_Preview.getValue())
.model("ERNIE-4.5-8K-Preview")
.build()
);

View File

@ -18,7 +18,7 @@ public class OpenAiImageModelTests {
private final OpenAiImageModel imageModel = new OpenAiImageModel(OpenAiImageApi.builder()
.baseUrl("https://api.holdai.top") // apiKey
.apiKey("sk-aN6nWn3fILjrgLFT0fC4Aa60B72e4253826c77B29dC94f17")
.apiKey("sk-PytRecQlmjEteoa2RRN6cGnwslo72UUPLQVNEMS6K9yjbmpD")
.build());
@Test
@ -26,8 +26,8 @@ public class OpenAiImageModelTests {
public void testCall() {
// 准备参数
ImageOptions options = OpenAiImageOptions.builder()
.withModel(OpenAiImageApi.ImageModel.DALL_E_2.getValue()) // 这个模型比较便宜
.withHeight(256).withWidth(256)
.model(OpenAiImageApi.ImageModel.DALL_E_2.getValue()) // 这个模型比较便宜
.height(256).width(256)
.build();
ImagePrompt prompt = new ImagePrompt("中国长城!", options);

View File

@ -2,11 +2,11 @@ package cn.iocoder.yudao.module.ai.framework.ai.core.model.image;
import org.junit.jupiter.api.Disabled;
import org.junit.jupiter.api.Test;
import org.springaicommunity.qianfan.QianFanImageModel;
import org.springaicommunity.qianfan.QianFanImageOptions;
import org.springaicommunity.qianfan.api.QianFanImageApi;
import org.springframework.ai.image.ImagePrompt;
import org.springframework.ai.image.ImageResponse;
import org.springframework.ai.qianfan.QianFanImageModel;
import org.springframework.ai.qianfan.QianFanImageOptions;
import org.springframework.ai.qianfan.api.QianFanImageApi;
import static cn.iocoder.yudao.module.ai.framework.ai.core.model.image.StabilityAiImageModelTests.viewImage;

View File

@ -31,8 +31,8 @@ public class StabilityAiImageModelTests {
public void testCall() {
// 准备参数
ImageOptions options = OpenAiImageOptions.builder()
.withModel("stable-diffusion-v1-6")
.withHeight(320).withWidth(320)
.model("stable-diffusion-v1-6")
.height(320).width(320)
.build();
ImagePrompt prompt = new ImagePrompt("great wall", options);

View File

@ -1,7 +1,7 @@
package cn.iocoder.yudao.module.ai.framework.ai.core.model.ppt.wdd;
import cn.iocoder.yudao.module.ai.framework.ai.core.model.wenduoduo.api.WenDuoDuoPptApi;
import cn.iocoder.yudao.framework.common.util.json.JsonUtils;
import cn.iocoder.yudao.module.ai.framework.ai.core.model.wenduoduo.api.WenDuoDuoPptApi;
import org.junit.jupiter.api.Disabled;
import org.junit.jupiter.api.Test;
import reactor.core.publisher.Flux;

View File

@ -1,8 +1,8 @@
package cn.iocoder.yudao.module.ai.framework.ai.core.model.ppt.xunfei;
import cn.hutool.core.io.FileUtil;
import cn.iocoder.yudao.module.ai.framework.ai.core.model.xinghuo.api.XunFeiPptApi;
import cn.iocoder.yudao.framework.common.util.json.JsonUtils;
import cn.iocoder.yudao.module.ai.framework.ai.core.model.xinghuo.api.XunFeiPptApi;
import org.junit.jupiter.api.Disabled;
import org.junit.jupiter.api.Test;
import org.springframework.mock.web.MockMultipartFile;

View File

@ -6,8 +6,8 @@ server:
spring:
autoconfigure:
exclude:
- org.springframework.ai.autoconfigure.vectorstore.qdrant.QdrantVectorStoreAutoConfiguration # 禁用 AI 模块的 Qdrant手动创建
- org.springframework.ai.autoconfigure.vectorstore.milvus.MilvusVectorStoreAutoConfiguration # 禁用 AI 模块的 Milvus手动创建
- org.springframework.ai.vectorstore.qdrant.autoconfigure.QdrantVectorStoreAutoConfiguration # 禁用 AI 模块的 Qdrant手动创建
- org.springframework.ai.vectorstore.milvus.autoconfigure.MilvusVectorStoreAutoConfiguration # 禁用 AI 模块的 Milvus手动创建
# 数据源配置项
datasource:
druid: # Druid 【监控】相关的全局配置

View File

@ -10,8 +10,8 @@ spring:
- de.codecentric.boot.admin.server.ui.config.AdminServerUiAutoConfiguration # 禁用 Spring Boot Admin 的 Server UI 的自动配置
- de.codecentric.boot.admin.server.cloud.config.AdminServerDiscoveryAutoConfiguration # 禁用 Spring Boot Admin 的 Server 的自动配置
- de.codecentric.boot.admin.client.config.SpringBootAdminClientAutoConfiguration # 禁用 Spring Boot Admin 的 Client 的自动配置
- org.springframework.ai.autoconfigure.vectorstore.qdrant.QdrantVectorStoreAutoConfiguration # 禁用 AI 模块的 Qdrant手动创建
- org.springframework.ai.autoconfigure.vectorstore.milvus.MilvusVectorStoreAutoConfiguration # 禁用 AI 模块的 Milvus手动创建
- org.springframework.ai.vectorstore.qdrant.autoconfigure.QdrantVectorStoreAutoConfiguration # 禁用 AI 模块的 Qdrant手动创建
- org.springframework.ai.vectorstore.milvus.autoconfigure.MilvusVectorStoreAutoConfiguration # 禁用 AI 模块的 Milvus手动创建
# 数据源配置项
datasource:
druid: # Druid 【监控】相关的全局配置

View File

@ -174,7 +174,7 @@ spring:
vectorstore: # 向量存储
redis:
initialize-schema: true
index: knowledge_index # Redis 中向量索引的名称:用于存储和检索向量数据的索引标识符,所有相关的向量搜索操作都会基于这个索引进行
index-name: knowledge_index # Redis 中向量索引的名称:用于存储和检索向量数据的索引标识符,所有相关的向量搜索操作都会基于这个索引进行
prefix: "knowledge_segment:" # Redis 中存储向量数据的键名前缀:这个前缀会添加到每个存储在 Redis 中的向量数据键名前,每个 document 都是一个 hash 结构
qdrant:
initialize-schema: true
@ -212,13 +212,14 @@ spring:
api-key: xxxx
moonshot: # 月之暗灭KIMI
api-key: sk-abc
deepseek: # DeepSeek
api-key: sk-e94db327cc7d457d99a8de8810fc6b12
chat:
options:
model: deepseek-chat
yudao:
ai:
deep-seek: # DeepSeek
enable: true
api-key: sk-e94db327cc7d457d99a8de8810fc6b12
model: deepseek-chat
doubao: # 字节豆包
enable: true
api-key: 5c1b5747-26d2-4ebd-a4e0-dd0e8d8b4272